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Isothermal and non-isothermal kinetics are classified according to the viewpoint 
of rational approach. The appropriate selection of basic quantities and constitutive 
equations is stressed. The extensive discussion recently focused to the meaning of the 
partial derivatives is reinvestigated and clarified considering the origin of following 
equation 

. = f(T, t) 

where ~ is the extent of reaction, T and t are the temperature and time respec- 
tively, and f represents a function. The meaning of partial derivatives is demon- 
strated in details. The disagreement sometimes claimed between the data evaluated 
by means of isothermal and non-isothermal kinetics is also reviewed, but no funda- 
mental differences are established. 

A recent article by MacCallum and Tanne~ [1 ] on a non-isothermal rate equation 
has created an extensive discussion as to the applicability of  the isothermal mathe- 
matical treatment to non-isothermal conditions for which it is assumed that the 
concentration, C, under non-isothermal conditions in a homogeneous system is a 
function of both the temperature, T, and the time, t. This assumption leads to the 
following equation, based upon a normal mathematical procedure for partial 
differentiation 

dC ( ~ C j  ( a C )  dT 
- + ~ -  : d /  (1) dt 0 t -  T t 

Some authors [1, 2] have claimed that the term (gC/Ot)r  is appropriate to de- 
scribe the isothermal rate of  a process only. Hill [3] first argued that the term 
(~ C/~ T)t is effectively zero, comparing the situation to that of  the arrow in flight. 
Although the arrow is in motion, at any instance it is at rest, similarly to the state 
of  a chemically reacting system defined at any instant of  time without reference 
to change. Felder and Stehel [4] later pointed out that such an instantaneous rate 
of  Eq. (1) would depend not only on the present state of  the system (e.g. the fre- 
quency of collisions, relative energies and the orientation of the molecules of  the 
system), but also on previous and future states. They emphasized that Eq. (1)is 
invalid because C is a path function rather than a state function of t•e variables 
t and T. Holba and Sestfik [5 ] made a mathematical attempt to calculate possible 
consequences of  Eq. (1) upon the analytical form of the non-isothermal rate equa- 
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tion. By assuming that the degree of reaction*, c~, is a state function of T and t, 
they arrived at a relationship yielding a non-isothermal rate about ten times 
faster than the isothermal one. Hrma and Satava [6] discussed the actual meaning 
of partial derivatives using the established form and significance of the specific 
rate constant. They concluded that the non-isothermal a of Eq. (1) would then 
depend only on the total duration of the process and its final temperature. 

In his defence of the validity of Eq. (1), MacCallum [7] assumed that the tem- 
perature is only one of the physical parameters which may be varied during a ki- 
netic reaction; the volume of the reactant solution, the pressure of volatile pro- 
ducts, etc., could also be changed during an isothermal decomposition, just as in 
non-isothermal experiments the temperature is linearly raised holding other 
variables constant. He considered the case of adding an inert diluent at a con- 
stant rate during a process, resulting in a mathematical description analogous to 
Eq. (1), for the volume, V: 

d C { t? C } (c3C d t - ~ -  v + ~-V , t -d -t (2) 

where the partial terms were further analytically expressed. 
Another more experimental approach to this discussion was based on a long 

kinetic practice which has exhibited that tke reaction rate, dc~/dt, is proportional 
to the product of two separate functions; the first, k(T), is temperature-dependent, 
and the second, f(e), is related to c~ only: 

dT/dt = k(T) f(c 0 . (3) 

The validity of Eq. (3) has also been confirmed in non-isothermal kinetics, e.g. 
by Sestfik [8], who showed a simple accumulation procedure based on infinitesi- 
mal changes in ~ scanned along a non-isotherm, and by Simmons and Wendlandt 
[9], who made a similar stepwise calculation of the instantaneous rate constant 
under isothermal conditions with linearly or hyperbolically elevated temperature. 
Gilles and Tompa [10] stressed the fact that the value of ~, as the solution of a 
special form of the differential equation (3), dc~/dt = k(T)c~, depends at time t 
on the functional relationship between T and t, and in general therefore is not a 
function of two independent variables T and t. 

Because the situation is still not completely clear, the aim of this article is to 
review the problem employing a well-defined concept. 

* C o n c e n t r a t i o n  C, as well as any  o the r  phys ica l  p rope r ty  wh ich  is chosen  to represen t  the  
s y s t e m  inves t iga ted ,  can  be n o r m a l i s e d  in the  f o r m  of  a so-ca l led  f rac t ion  conver s ion  c~, by the  
equation 

c~(t) = [ C ( t ) -  C o ] / [ C c  e - -  C0] 

where  subscr ip t s  indicate  the  va lue  o f  C at  the  initial t ime (t = 0) and  at  t--+ oo. The  case 
where  Coo is n o t  c o n s t a n t  a n d  varies  wi th  the  t empe ra tu r e  [5], is no t  cons idered  here.  
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Rational approach to the kinetics 

In our opinion the misunderstanding arose from a vague definition of  the con- 
cepts which appear in the considerations. A convenient framework in which al 
necessary concepts can be exactly defined is the rational thermodynamics devel- 
oped by Coleman and Noll [11] (for applications in chemical kinetics see e.g. 
[12]). This method does not introduce new physical principles but its progres- 
siveness is based on the precise establishment of logical connections between the 
thermodynamic notions. In contrast to classical thermodynamics which is suit- 
able for the description of a reversible equilibration, rational thermodynamics 
may also be used for processes distant from equilibrium and hence may cover the 
field of kinetics as well. Only some general features of  the rational thermodynamic 
approach which are relevant to the present discussion will be utilized here, namely 
to clear the definition of a thermodynamic process and a constitutive equation 
and their mutual relations [13]. 

Any theory which attempts to describe a physical phenomenon requires drastic 
assumptions as to what is to be included and what can reasonably be neglected. 
These assumptions are set up in a list of basic quantities which unambiguously 
describe the given thermodynamic system (e.g. volume V, pressure P, heat ex- 
change Q, temperature T, fraction conversion ~, etc.). We say that the thermody- 
namic process (i.e. continuous sequences of the states of  the system), or just a 
process, is completely described if the basic quantities are specified as a function 
of the time*, t [e.g. V = V(t), P = P(t), Q = Q(t), T = T(t), ~ = cfft) etc.]. We 
neglect here all quantities except a kinetic variable c~, and the temperature T. 
Hence a process in our system is represented by the pair of functions c~ = a(t), 
and T = T(t), denoted [ct(t), T(t)]. 

A special class of  processes in which T(t) = K = constant is called the class 
of isothermal processes [a(t), K]. Similarly we can have the class of linear processes 
[a(t), K't] where Tis  given as a linear function of t, and K'  is a constant; the class 
of  quadratic processes [a(t), K"t2], etc. 

The basic quantities are not independent. They must satisfy constitutive equations 
which are characteristic for a given system (in general the basic quantities must 
satisfy both the constitutive equations and balance laws. The balance laws express 
properties common to all systems covered by the theory, and the constitutive 
equations formalised diversities in the system allowed by the balance laws**). 

A process which satisfies the constitutive equations is called admissible. From 
this point of  view isothermal kinetics concerns the class of admissible isothermal 
processes; non-isothermal kinetics concerns the class of admissible linear, quadratic 

* The dependence of basic quantities on the position can generally be considered. A pro- 
cess independent of  the position is called homogeneous .  

** The balance laws, e.g. the conservation of mass  and energy, are not  considered here as 
they do not  appear in the present discussion. 
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or other dynamic processes. According to the class of processes involved, we have 
linear non-isothermal kinetics, quadratic non-isothermal kinetics, hyperbolic 
non-isothermal kinetics, etc. 

Const i tut ive  equations in chemica l  k inet ics  

The entire form of constitutive equations for a given system can be deduced 
from suitably designed experiments or derived from a microscopic theory. In 
our case the choice of the constitutive equation should be found through the avail- 
able kinetic relations justified by both experimental practice and the statistical 
approach based on the microscopic theory, as for example the Arrhenius rate 
equation, the collision theory, the activated complex theory, etc. [14]. 

For the system characterised by the basic quantities ~(t) and T(t) it seems to be 
fairly well established that Eq. (3) holds as the constitutive equation; this will 
be used in the following discussion in a slightly generalised form, i.e. 

d~/dt = F(~, T) (4) 

where F denotes a function (as well as G later). 
a) In isothermal kinetics we have from Eq. (4) 

de/dt = F(cq K) .  (5) 

We denote the solution of Eq. (5), assuming the admissible isothermal process, 
characterised by K as 

~(t) = ~(t, K)*. (6) 

We may write formally 

- + - -~  ~ - =  ~ -  . (7)  

Eq. (7)follows from dK/dt = 0 as K is a constant in an isothermal process. The 
derivative (a&/g K)t may in general be non-zero. Physically this derivative measures 
the change of ~ at t, if we consider instead of the process with T = K the process 
with T = K + dK (see also Fig. 1 but replace K' with K). 

b) In linear non-isothermal kinetics we have from Eq. (4) 

(de/d0 - F(t, K't). (8) 

We denote the solution of Eq. (8) in the admissible linear process characterised 
by K' as 

c,(t) = K' )  
and we may proceed 

' - - - - b 7  t K' 

(9) 

(10) 

* Note  tha t  the superposed  care t  in ~ serves to d i s t ingu i sh  this  func t ion  f r o m  its value.  
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(the illustration of which is given in Fig. 1). Similarly to Eq. (7) dK'/dt = 0 accord- 
ing to the assumption that K' is a constant for a linear process and (8~/8K')~ in- 
dicates the change in ~ in two infinitesimally close processes differing by dK' 
(see Fig. 1). 
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d ' t  ~at j ~z, 

~ (t.K') 

I l ' , d t  ,, , 

t F 
I [ 
] i 

il//~dK' K~ 

K~ 

~ / /  t lm" 

Fig. l .  Diagrammatic representation o f  the system ~ = ~(t, K') 

Fig. 2. D iagrammat ic  representation of  the system ~ = ~(t, T) 
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However, the solution of Eq. (8) may also be obtained in the form 

e(t) = 8(t, T/t) def. = 8(t, T) (11) 

using K '  = Tit. The function 8 for given values of  t and T yields the value of 
at t in the linear process characterised by K '  = Tit. In terms of ~ we obtain 

d--T = ~ -  T + ~ <  ~-=1, a t )  T 8 T t  

(as graphically demonstrated in Fig. 2). In Eq. (12) both partial derivatives are 
generally non-zero, and (8 8/a t)T means the change of ~ if we replace the process K '  
at t with the process K '  + dK '  ( =  T/(t + d t ) )  at t + dt (see Fig. 3b). Accordingly, 
(~8/ST)t  reflects the change of ~ at t if we replace the process K '  at Tit with the 
process K' + dK'  (where dK '  = dT/t) (see Fig. 3a). 

/ 8~ \ ~(t +dr ~ K'+dK') 

o) ~ K' 

I ~ ( t *d t ,  K" dK') 

I 1 I , / 

I /I V /1 
/ [ / l1 

b) ~K' 

Fig. 3. Diagrammatic representation of the partial derivatives in the system ~ = ~(t, T) 

It  is important  to point out that the partial derivatives (O&/St)K in Eq. (7) and 
(OS/St)T in Eq. (12) are in general not equal as is indicated by their different 
physical meanings.* Hence, comparison of isothermal and non-isothermal kinetics 
is not possible to reduce to the question of the meaning and value of the deriv- 
atives (ac~/0T)t, but the difference in the values of  (S&/Ot)T=K and (88/OtT) is 
also significant. 

A similar analysis can be applied for any type of process, e.g. quadratic, hyper- 
bolic, etc. 

* We can demonstrate a simple example for the special form of Eq. (4) i.e. d~/dt = -- aT 
[where f(~) = -- e and k(T) ~- T, compare Eq. (3)]. It is easy to find that &(t, K) = exp (-- Kt); 
(~t, K') = exp (-- K't 2/2) and ~(t, T) ---- exp (-- T t/2). Hence (~ ~! ~ t)K = -- K exp (-- Kt ) an d 
(t?~/t~t)r=K =- --K/2 exp ( -  Kt/2). 
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Discussion 

We may now consider once more the meaning of Eq. (1) in the light of the 
preceding rational approach. We may ascribe to it two different meanings: 

a) Eq. (1) rewritten as 

(13) 

This is a consequence of the constitutive equation of the type 

= G(T, t) (14) 

which, in fact, is implicitly involved in [1, 7]. However, this constitutive equation 
would physically describe a material controlled by an internal clock, which is not 
the case for an ordinary chemical reaction. 

b) Eq. (1) as understood in the sense of Eqs (7), (10) and (12). It is evident 
that its meaning then depends critically on the precise definition of the symbol C 
on the right-hand side of Eq. (1). This is rather an extension of the idea expressed 
by Felder and Stehel [4], Hrma and Satava [6], and Gilles and Tompa [10] that 
the interpretation of Eq. (1) is necessarily related to the process itself. 

As we can see, there is no essential discrepancy between the isothermal and non- 
isothermal kinetics. In usual practice the function k(T) is expressed by an exponen- 
tial type equation [14] and instead off(a) a particular model relation is used, based 
upon a physico-geometrical hypothesis [8]. In such a special case the kinetic con- 
stants (i.e. parameters defining the analytical form of a particular differential 
equation [3]) can be determined by either kinetics.* Disagreements sometimes re- 
ported [1 ] between the kinetic data observed under isothermal and non-isothermal 
conditions are therefore not fundamental and may be caused by: 

a) experimental reasons, e.g. inaccurate determination of basic quantities and/or 
not exact satisfaction of the required and predetermined conditions for a given 
process; 

b) oversimplified separation of c~ and Tfunctions in Eq. (4) [as given in Eq. (3)] 
and/or inaccurate formulation of the particular functions k(T) and f(c0; 

c) a more complex constitutive equation. 
Considering here only point c), we can continue using the same method as above. 

Assuming a constitutive equation (4) which involves the higher derivatives of  
temperature T (e.g. T) we have for instance 

de/dt = F(c~, T, ~i'). (15) 

It then follows for the isothermal kinetics that 

(16) da/dt = F(~, K, 0) ~ ~(t) = &(c~, K) 

* For the integration of Eq. (8) [solution Eq. (9)] the temperature-dependence of k ( T )  must 
be kept in mind (for the analytical solution see [15]). 
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and  for the l inear non- iso thermal  kinetics 

d~/ dt  = F(~, K '  t, K ' )  ---* ~( t ) = ~( t, K ' )  (17) 

and /o r  

~(t)  = ~(t,  ~r). 

I t  can be seen that  the result ing isothermal kinetics is eqmvalent  to that  described 
in  Eqs (5), (6) and  (7), bu t  this l inear non- i so thermal  kinetics is not  of the same 
na ture  as that  discussed in p. 196, Eqs (5 ) - (12 ) .  I t  gives more in fo rmat ion  about  
the process bu t  would be appropria te  only for systems exhibit ing very fast 
changes with temperature  increase. This is no t  the case for an  ord inary  chemical 
react ion either. 

The authors are obliged to Dr. P. Holba of the Institute of Solid State Physics and Dr. P. 
Hrma of the Joint Laboratory for Silicate Research, The Czechoslovak Academy of Sciences, 
Prague, for their helpful suggestions and friendly discussions on this subject. 
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R~SUM~ -- Dans l'optique d'une approche rationnelle, on proc6de ~t un classement de la cin6- 
tique en r6gimes isotherme et non-isotherme. On met en 4vidence le choix judicieux de valeurs 
fondamentales et d'6quations d'6tat. On 6tudie la discussion r6cente concernant la signification 
des d6riv6es partielles et l'on 6claircit la question en consid6rant l'6quation 

= f(T,  t) 

oh cr est le degr6 d'avancement de la r6action, Tet t la temp4rature et le temps, fune  fonction. 
On discute les causes du d6saccord quelquefois observ6 entre les donn6es 6valu4es en r6gimes 
isotherme ou non-isotherme. 
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ZUSAMMENFASSUNG - -  I so the rme  und nicht- isotherme Kinetik wurden entsprechend einer 
rationellen Ann~iherung klassifiziert. Die geeignete Auswahl  der fundamenta len  Mengen und 
konst i tut iven Gleichungen wurde betont.  Die neuerliche lebhafte Diskuss ion fiber die Be- 
deutung der partiellen Derivativen wurde tiberprtift und durch  die Gleichung gekl/irt: 

= f ( T ,  t )  

wobei ~ den Reakt ionsgrad,  T und t die Tempera tu r  und die Zeit, f eine Funk t ion  bedeuten. 
Es wurde auch die in einigen F~illen beobachtete  Nichtf ibereinst immung der durch isotherme 
und nicht- isotherme Kinetik erhal tenen Daten  behandelt .  

Pe3ioMe - -  C TO~lI(rI 3peI-IH~ palIrlOHaJIbnOrO IIO~XO~Ia KJiaccri~OrlttrlpoBanbi i, i30TepMrlqecKa~ rr 
Be~i30TepMri~iecKa~ K~IHeTHKa. IIO~IqepKHyTa Heo6xo~II, IMOCTb COCTBeTCTBylOIILeFo BbI6opa 
OCHOBHI,IX Be:II, Iq~IH rI nprlMeHSeMblX ypaBHei-m~. YIpeiIMeT IItHpOKO~ ~HCKyCCrlrI, rlanpaB~IaeMo~t 
B llocJie~Hee BpeMa Ha 3Ha~IeHHe qaCTHBIX IIpOH3BO~H]bIX, paCCMOTpeH CHOBa H ~aH~I pa3"b.qCHeHH~I 
o,rlOCrlTeabao ypaBrlenrIn 

= f ( T ,  t)  

r~Ie ~ --  Mepa peaKl/i,Iyi, T i.i t - -  TeMnepaTypa ri BpeM~[, COOTBeTCTBeHHO, rI f --  ~OyHKIII, I~l. Pacc- 
MOTpeltO TO)Ke pacxox~ei-iHe, O6rlapy)K~iBaeMoe rlrlOr~Ia MeeKly IlaI-IHblMH, pacc'-I/,ITaHHblM~ 
IIocpe~ICTBOM I, I3oTeplvLr,I'-IeCKO~ H HeH3oTepMHKeCKO~ KI, I/-IeTI, IKIiL 
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